aboutsummaryrefslogtreecommitdiff
path: root/vendor/honnef.co/go/tools/ssa/ssa.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/honnef.co/go/tools/ssa/ssa.go')
-rw-r--r--vendor/honnef.co/go/tools/ssa/ssa.go1745
1 files changed, 1745 insertions, 0 deletions
diff --git a/vendor/honnef.co/go/tools/ssa/ssa.go b/vendor/honnef.co/go/tools/ssa/ssa.go
new file mode 100644
index 0000000..aeddd65
--- /dev/null
+++ b/vendor/honnef.co/go/tools/ssa/ssa.go
@@ -0,0 +1,1745 @@
1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package ssa
6
7// This package defines a high-level intermediate representation for
8// Go programs using static single-assignment (SSA) form.
9
10import (
11 "fmt"
12 "go/ast"
13 "go/constant"
14 "go/token"
15 "go/types"
16 "sync"
17
18 "golang.org/x/tools/go/types/typeutil"
19)
20
21// A Program is a partial or complete Go program converted to SSA form.
22type Program struct {
23 Fset *token.FileSet // position information for the files of this Program
24 imported map[string]*Package // all importable Packages, keyed by import path
25 packages map[*types.Package]*Package // all loaded Packages, keyed by object
26 mode BuilderMode // set of mode bits for SSA construction
27 MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets
28
29 methodsMu sync.Mutex // guards the following maps:
30 methodSets typeutil.Map // maps type to its concrete methodSet
31 runtimeTypes typeutil.Map // types for which rtypes are needed
32 canon typeutil.Map // type canonicalization map
33 bounds map[*types.Func]*Function // bounds for curried x.Method closures
34 thunks map[selectionKey]*Function // thunks for T.Method expressions
35}
36
37// A Package is a single analyzed Go package containing Members for
38// all package-level functions, variables, constants and types it
39// declares. These may be accessed directly via Members, or via the
40// type-specific accessor methods Func, Type, Var and Const.
41//
42// Members also contains entries for "init" (the synthetic package
43// initializer) and "init#%d", the nth declared init function,
44// and unspecified other things too.
45//
46type Package struct {
47 Prog *Program // the owning program
48 Pkg *types.Package // the corresponding go/types.Package
49 Members map[string]Member // all package members keyed by name (incl. init and init#%d)
50 values map[types.Object]Value // package members (incl. types and methods), keyed by object
51 init *Function // Func("init"); the package's init function
52 debug bool // include full debug info in this package
53
54 // The following fields are set transiently, then cleared
55 // after building.
56 buildOnce sync.Once // ensures package building occurs once
57 ninit int32 // number of init functions
58 info *types.Info // package type information
59 files []*ast.File // package ASTs
60}
61
62// A Member is a member of a Go package, implemented by *NamedConst,
63// *Global, *Function, or *Type; they are created by package-level
64// const, var, func and type declarations respectively.
65//
66type Member interface {
67 Name() string // declared name of the package member
68 String() string // package-qualified name of the package member
69 RelString(*types.Package) string // like String, but relative refs are unqualified
70 Object() types.Object // typechecker's object for this member, if any
71 Pos() token.Pos // position of member's declaration, if known
72 Type() types.Type // type of the package member
73 Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
74 Package() *Package // the containing package
75}
76
77// A Type is a Member of a Package representing a package-level named type.
78type Type struct {
79 object *types.TypeName
80 pkg *Package
81}
82
83// A NamedConst is a Member of a Package representing a package-level
84// named constant.
85//
86// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
87// identifier.
88//
89// NB: a NamedConst is not a Value; it contains a constant Value, which
90// it augments with the name and position of its 'const' declaration.
91//
92type NamedConst struct {
93 object *types.Const
94 Value *Const
95 pkg *Package
96}
97
98// A Value is an SSA value that can be referenced by an instruction.
99type Value interface {
100 // Name returns the name of this value, and determines how
101 // this Value appears when used as an operand of an
102 // Instruction.
103 //
104 // This is the same as the source name for Parameters,
105 // Builtins, Functions, FreeVars, Globals.
106 // For constants, it is a representation of the constant's value
107 // and type. For all other Values this is the name of the
108 // virtual register defined by the instruction.
109 //
110 // The name of an SSA Value is not semantically significant,
111 // and may not even be unique within a function.
112 Name() string
113
114 // If this value is an Instruction, String returns its
115 // disassembled form; otherwise it returns unspecified
116 // human-readable information about the Value, such as its
117 // kind, name and type.
118 String() string
119
120 // Type returns the type of this value. Many instructions
121 // (e.g. IndexAddr) change their behaviour depending on the
122 // types of their operands.
123 Type() types.Type
124
125 // Parent returns the function to which this Value belongs.
126 // It returns nil for named Functions, Builtin, Const and Global.
127 Parent() *Function
128
129 // Referrers returns the list of instructions that have this
130 // value as one of their operands; it may contain duplicates
131 // if an instruction has a repeated operand.
132 //
133 // Referrers actually returns a pointer through which the
134 // caller may perform mutations to the object's state.
135 //
136 // Referrers is currently only defined if Parent()!=nil,
137 // i.e. for the function-local values FreeVar, Parameter,
138 // Functions (iff anonymous) and all value-defining instructions.
139 // It returns nil for named Functions, Builtin, Const and Global.
140 //
141 // Instruction.Operands contains the inverse of this relation.
142 Referrers() *[]Instruction
143
144 // Pos returns the location of the AST token most closely
145 // associated with the operation that gave rise to this value,
146 // or token.NoPos if it was not explicit in the source.
147 //
148 // For each ast.Node type, a particular token is designated as
149 // the closest location for the expression, e.g. the Lparen
150 // for an *ast.CallExpr. This permits a compact but
151 // approximate mapping from Values to source positions for use
152 // in diagnostic messages, for example.
153 //
154 // (Do not use this position to determine which Value
155 // corresponds to an ast.Expr; use Function.ValueForExpr
156 // instead. NB: it requires that the function was built with
157 // debug information.)
158 Pos() token.Pos
159}
160
161// An Instruction is an SSA instruction that computes a new Value or
162// has some effect.
163//
164// An Instruction that defines a value (e.g. BinOp) also implements
165// the Value interface; an Instruction that only has an effect (e.g. Store)
166// does not.
167//
168type Instruction interface {
169 // String returns the disassembled form of this value.
170 //
171 // Examples of Instructions that are Values:
172 // "x + y" (BinOp)
173 // "len([])" (Call)
174 // Note that the name of the Value is not printed.
175 //
176 // Examples of Instructions that are not Values:
177 // "return x" (Return)
178 // "*y = x" (Store)
179 //
180 // (The separation Value.Name() from Value.String() is useful
181 // for some analyses which distinguish the operation from the
182 // value it defines, e.g., 'y = local int' is both an allocation
183 // of memory 'local int' and a definition of a pointer y.)
184 String() string
185
186 // Parent returns the function to which this instruction
187 // belongs.
188 Parent() *Function
189
190 // Block returns the basic block to which this instruction
191 // belongs.
192 Block() *BasicBlock
193
194 // setBlock sets the basic block to which this instruction belongs.
195 setBlock(*BasicBlock)
196
197 // Operands returns the operands of this instruction: the
198 // set of Values it references.
199 //
200 // Specifically, it appends their addresses to rands, a
201 // user-provided slice, and returns the resulting slice,
202 // permitting avoidance of memory allocation.
203 //
204 // The operands are appended in undefined order, but the order
205 // is consistent for a given Instruction; the addresses are
206 // always non-nil but may point to a nil Value. Clients may
207 // store through the pointers, e.g. to effect a value
208 // renaming.
209 //
210 // Value.Referrers is a subset of the inverse of this
211 // relation. (Referrers are not tracked for all types of
212 // Values.)
213 Operands(rands []*Value) []*Value
214
215 // Pos returns the location of the AST token most closely
216 // associated with the operation that gave rise to this
217 // instruction, or token.NoPos if it was not explicit in the
218 // source.
219 //
220 // For each ast.Node type, a particular token is designated as
221 // the closest location for the expression, e.g. the Go token
222 // for an *ast.GoStmt. This permits a compact but approximate
223 // mapping from Instructions to source positions for use in
224 // diagnostic messages, for example.
225 //
226 // (Do not use this position to determine which Instruction
227 // corresponds to an ast.Expr; see the notes for Value.Pos.
228 // This position may be used to determine which non-Value
229 // Instruction corresponds to some ast.Stmts, but not all: If
230 // and Jump instructions have no Pos(), for example.)
231 Pos() token.Pos
232}
233
234// A Node is a node in the SSA value graph. Every concrete type that
235// implements Node is also either a Value, an Instruction, or both.
236//
237// Node contains the methods common to Value and Instruction, plus the
238// Operands and Referrers methods generalized to return nil for
239// non-Instructions and non-Values, respectively.
240//
241// Node is provided to simplify SSA graph algorithms. Clients should
242// use the more specific and informative Value or Instruction
243// interfaces where appropriate.
244//
245type Node interface {
246 // Common methods:
247 String() string
248 Pos() token.Pos
249 Parent() *Function
250
251 // Partial methods:
252 Operands(rands []*Value) []*Value // nil for non-Instructions
253 Referrers() *[]Instruction // nil for non-Values
254}
255
256// Function represents the parameters, results, and code of a function
257// or method.
258//
259// If Blocks is nil, this indicates an external function for which no
260// Go source code is available. In this case, FreeVars and Locals
261// are nil too. Clients performing whole-program analysis must
262// handle external functions specially.
263//
264// Blocks contains the function's control-flow graph (CFG).
265// Blocks[0] is the function entry point; block order is not otherwise
266// semantically significant, though it may affect the readability of
267// the disassembly.
268// To iterate over the blocks in dominance order, use DomPreorder().
269//
270// Recover is an optional second entry point to which control resumes
271// after a recovered panic. The Recover block may contain only a return
272// statement, preceded by a load of the function's named return
273// parameters, if any.
274//
275// A nested function (Parent()!=nil) that refers to one or more
276// lexically enclosing local variables ("free variables") has FreeVars.
277// Such functions cannot be called directly but require a
278// value created by MakeClosure which, via its Bindings, supplies
279// values for these parameters.
280//
281// If the function is a method (Signature.Recv() != nil) then the first
282// element of Params is the receiver parameter.
283//
284// A Go package may declare many functions called "init".
285// For each one, Object().Name() returns "init" but Name() returns
286// "init#1", etc, in declaration order.
287//
288// Pos() returns the declaring ast.FuncLit.Type.Func or the position
289// of the ast.FuncDecl.Name, if the function was explicit in the
290// source. Synthetic wrappers, for which Synthetic != "", may share
291// the same position as the function they wrap.
292// Syntax.Pos() always returns the position of the declaring "func" token.
293//
294// Type() returns the function's Signature.
295//
296type Function struct {
297 name string
298 object types.Object // a declared *types.Func or one of its wrappers
299 method *types.Selection // info about provenance of synthetic methods
300 Signature *types.Signature
301 pos token.Pos
302
303 Synthetic string // provenance of synthetic function; "" for true source functions
304 syntax ast.Node // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
305 parent *Function // enclosing function if anon; nil if global
306 Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error)
307 Prog *Program // enclosing program
308 Params []*Parameter // function parameters; for methods, includes receiver
309 FreeVars []*FreeVar // free variables whose values must be supplied by closure
310 Locals []*Alloc // local variables of this function
311 Blocks []*BasicBlock // basic blocks of the function; nil => external
312 Recover *BasicBlock // optional; control transfers here after recovered panic
313 AnonFuncs []*Function // anonymous functions directly beneath this one
314 referrers []Instruction // referring instructions (iff Parent() != nil)
315
316 // The following fields are set transiently during building,
317 // then cleared.
318 currentBlock *BasicBlock // where to emit code
319 objects map[types.Object]Value // addresses of local variables
320 namedResults []*Alloc // tuple of named results
321 targets *targets // linked stack of branch targets
322 lblocks map[*ast.Object]*lblock // labelled blocks
323}
324
325// BasicBlock represents an SSA basic block.
326//
327// The final element of Instrs is always an explicit transfer of
328// control (If, Jump, Return, or Panic).
329//
330// A block may contain no Instructions only if it is unreachable,
331// i.e., Preds is nil. Empty blocks are typically pruned.
332//
333// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
334// graph independent of the SSA Value graph: the control-flow graph or
335// CFG. It is illegal for multiple edges to exist between the same
336// pair of blocks.
337//
338// Each BasicBlock is also a node in the dominator tree of the CFG.
339// The tree may be navigated using Idom()/Dominees() and queried using
340// Dominates().
341//
342// The order of Preds and Succs is significant (to Phi and If
343// instructions, respectively).
344//
345type BasicBlock struct {
346 Index int // index of this block within Parent().Blocks
347 Comment string // optional label; no semantic significance
348 parent *Function // parent function
349 Instrs []Instruction // instructions in order
350 Preds, Succs []*BasicBlock // predecessors and successors
351 succs2 [2]*BasicBlock // initial space for Succs
352 dom domInfo // dominator tree info
353 gaps int // number of nil Instrs (transient)
354 rundefers int // number of rundefers (transient)
355}
356
357// Pure values ----------------------------------------
358
359// A FreeVar represents a free variable of the function to which it
360// belongs.
361//
362// FreeVars are used to implement anonymous functions, whose free
363// variables are lexically captured in a closure formed by
364// MakeClosure. The value of such a free var is an Alloc or another
365// FreeVar and is considered a potentially escaping heap address, with
366// pointer type.
367//
368// FreeVars are also used to implement bound method closures. Such a
369// free var represents the receiver value and may be of any type that
370// has concrete methods.
371//
372// Pos() returns the position of the value that was captured, which
373// belongs to an enclosing function.
374//
375type FreeVar struct {
376 name string
377 typ types.Type
378 pos token.Pos
379 parent *Function
380 referrers []Instruction
381
382 // Transiently needed during building.
383 outer Value // the Value captured from the enclosing context.
384}
385
386// A Parameter represents an input parameter of a function.
387//
388type Parameter struct {
389 name string
390 object types.Object // a *types.Var; nil for non-source locals
391 typ types.Type
392 pos token.Pos
393 parent *Function
394 referrers []Instruction
395}
396
397// A Const represents the value of a constant expression.
398//
399// The underlying type of a constant may be any boolean, numeric, or
400// string type. In addition, a Const may represent the nil value of
401// any reference type---interface, map, channel, pointer, slice, or
402// function---but not "untyped nil".
403//
404// All source-level constant expressions are represented by a Const
405// of the same type and value.
406//
407// Value holds the exact value of the constant, independent of its
408// Type(), using the same representation as package go/constant uses for
409// constants, or nil for a typed nil value.
410//
411// Pos() returns token.NoPos.
412//
413// Example printed form:
414// 42:int
415// "hello":untyped string
416// 3+4i:MyComplex
417//
418type Const struct {
419 typ types.Type
420 Value constant.Value
421}
422
423// A Global is a named Value holding the address of a package-level
424// variable.
425//
426// Pos() returns the position of the ast.ValueSpec.Names[*]
427// identifier.
428//
429type Global struct {
430 name string
431 object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
432 typ types.Type
433 pos token.Pos
434
435 Pkg *Package
436}
437
438// A Builtin represents a specific use of a built-in function, e.g. len.
439//
440// Builtins are immutable values. Builtins do not have addresses.
441// Builtins can only appear in CallCommon.Func.
442//
443// Name() indicates the function: one of the built-in functions from the
444// Go spec (excluding "make" and "new") or one of these ssa-defined
445// intrinsics:
446//
447// // wrapnilchk returns ptr if non-nil, panics otherwise.
448// // (For use in indirection wrappers.)
449// func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
450//
451// Object() returns a *types.Builtin for built-ins defined by the spec,
452// nil for others.
453//
454// Type() returns a *types.Signature representing the effective
455// signature of the built-in for this call.
456//
457type Builtin struct {
458 name string
459 sig *types.Signature
460}
461
462// Value-defining instructions ----------------------------------------
463
464// The Alloc instruction reserves space for a variable of the given type,
465// zero-initializes it, and yields its address.
466//
467// Alloc values are always addresses, and have pointer types, so the
468// type of the allocated variable is actually
469// Type().Underlying().(*types.Pointer).Elem().
470//
471// If Heap is false, Alloc allocates space in the function's
472// activation record (frame); we refer to an Alloc(Heap=false) as a
473// "local" alloc. Each local Alloc returns the same address each time
474// it is executed within the same activation; the space is
475// re-initialized to zero.
476//
477// If Heap is true, Alloc allocates space in the heap; we
478// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
479// returns a different address each time it is executed.
480//
481// When Alloc is applied to a channel, map or slice type, it returns
482// the address of an uninitialized (nil) reference of that kind; store
483// the result of MakeSlice, MakeMap or MakeChan in that location to
484// instantiate these types.
485//
486// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
487// or the ast.CallExpr.Rparen for a call to new() or for a call that
488// allocates a varargs slice.
489//
490// Example printed form:
491// t0 = local int
492// t1 = new int
493//
494type Alloc struct {
495 register
496 Comment string
497 Heap bool
498 index int // dense numbering; for lifting
499}
500
501var _ Instruction = (*Sigma)(nil)
502var _ Value = (*Sigma)(nil)
503
504type Sigma struct {
505 register
506 X Value
507 Branch bool
508}
509
510func (p *Sigma) Value() Value {
511 v := p.X
512 for {
513 sigma, ok := v.(*Sigma)
514 if !ok {
515 break
516 }
517 v = sigma
518 }
519 return v
520}
521
522func (p *Sigma) String() string {
523 return fmt.Sprintf("σ [%s.%t]", relName(p.X, p), p.Branch)
524}
525
526// The Phi instruction represents an SSA φ-node, which combines values
527// that differ across incoming control-flow edges and yields a new
528// value. Within a block, all φ-nodes must appear before all non-φ
529// nodes.
530//
531// Pos() returns the position of the && or || for short-circuit
532// control-flow joins, or that of the *Alloc for φ-nodes inserted
533// during SSA renaming.
534//
535// Example printed form:
536// t2 = phi [0: t0, 1: t1]
537//
538type Phi struct {
539 register
540 Comment string // a hint as to its purpose
541 Edges []Value // Edges[i] is value for Block().Preds[i]
542}
543
544// The Call instruction represents a function or method call.
545//
546// The Call instruction yields the function result if there is exactly
547// one. Otherwise it returns a tuple, the components of which are
548// accessed via Extract.
549//
550// See CallCommon for generic function call documentation.
551//
552// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
553//
554// Example printed form:
555// t2 = println(t0, t1)
556// t4 = t3()
557// t7 = invoke t5.Println(...t6)
558//
559type Call struct {
560 register
561 Call CallCommon
562}
563
564// The BinOp instruction yields the result of binary operation X Op Y.
565//
566// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
567//
568// Example printed form:
569// t1 = t0 + 1:int
570//
571type BinOp struct {
572 register
573 // One of:
574 // ADD SUB MUL QUO REM + - * / %
575 // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
576 // EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
577 Op token.Token
578 X, Y Value
579}
580
581// The UnOp instruction yields the result of Op X.
582// ARROW is channel receive.
583// MUL is pointer indirection (load).
584// XOR is bitwise complement.
585// SUB is negation.
586// NOT is logical negation.
587//
588// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
589// and a boolean indicating the success of the receive. The
590// components of the tuple are accessed using Extract.
591//
592// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
593// For receive operations (ARROW) implicit in ranging over a channel,
594// Pos() returns the ast.RangeStmt.For.
595// For implicit memory loads (STAR), Pos() returns the position of the
596// most closely associated source-level construct; the details are not
597// specified.
598//
599// Example printed form:
600// t0 = *x
601// t2 = <-t1,ok
602//
603type UnOp struct {
604 register
605 Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
606 X Value
607 CommaOk bool
608}
609
610// The ChangeType instruction applies to X a value-preserving type
611// change to Type().
612//
613// Type changes are permitted:
614// - between a named type and its underlying type.
615// - between two named types of the same underlying type.
616// - between (possibly named) pointers to identical base types.
617// - from a bidirectional channel to a read- or write-channel,
618// optionally adding/removing a name.
619//
620// This operation cannot fail dynamically.
621//
622// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
623// from an explicit conversion in the source.
624//
625// Example printed form:
626// t1 = changetype *int <- IntPtr (t0)
627//
628type ChangeType struct {
629 register
630 X Value
631}
632
633// The Convert instruction yields the conversion of value X to type
634// Type(). One or both of those types is basic (but possibly named).
635//
636// A conversion may change the value and representation of its operand.
637// Conversions are permitted:
638// - between real numeric types.
639// - between complex numeric types.
640// - between string and []byte or []rune.
641// - between pointers and unsafe.Pointer.
642// - between unsafe.Pointer and uintptr.
643// - from (Unicode) integer to (UTF-8) string.
644// A conversion may imply a type name change also.
645//
646// This operation cannot fail dynamically.
647//
648// Conversions of untyped string/number/bool constants to a specific
649// representation are eliminated during SSA construction.
650//
651// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
652// from an explicit conversion in the source.
653//
654// Example printed form:
655// t1 = convert []byte <- string (t0)
656//
657type Convert struct {
658 register
659 X Value
660}
661
662// ChangeInterface constructs a value of one interface type from a
663// value of another interface type known to be assignable to it.
664// This operation cannot fail.
665//
666// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
667// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
668// instruction arose from an explicit e.(T) operation; or token.NoPos
669// otherwise.
670//
671// Example printed form:
672// t1 = change interface interface{} <- I (t0)
673//
674type ChangeInterface struct {
675 register
676 X Value
677}
678
679// MakeInterface constructs an instance of an interface type from a
680// value of a concrete type.
681//
682// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
683// of X, and Program.MethodValue(m) to find the implementation of a method.
684//
685// To construct the zero value of an interface type T, use:
686// NewConst(constant.MakeNil(), T, pos)
687//
688// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
689// from an explicit conversion in the source.
690//
691// Example printed form:
692// t1 = make interface{} <- int (42:int)
693// t2 = make Stringer <- t0
694//
695type MakeInterface struct {
696 register
697 X Value
698}
699
700// The MakeClosure instruction yields a closure value whose code is
701// Fn and whose free variables' values are supplied by Bindings.
702//
703// Type() returns a (possibly named) *types.Signature.
704//
705// Pos() returns the ast.FuncLit.Type.Func for a function literal
706// closure or the ast.SelectorExpr.Sel for a bound method closure.
707//
708// Example printed form:
709// t0 = make closure anon@1.2 [x y z]
710// t1 = make closure bound$(main.I).add [i]
711//
712type MakeClosure struct {
713 register
714 Fn Value // always a *Function
715 Bindings []Value // values for each free variable in Fn.FreeVars
716}
717
718// The MakeMap instruction creates a new hash-table-based map object
719// and yields a value of kind map.
720//
721// Type() returns a (possibly named) *types.Map.
722//
723// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
724// the ast.CompositeLit.Lbrack if created by a literal.
725//
726// Example printed form:
727// t1 = make map[string]int t0
728// t1 = make StringIntMap t0
729//
730type MakeMap struct {
731 register
732 Reserve Value // initial space reservation; nil => default
733}
734
735// The MakeChan instruction creates a new channel object and yields a
736// value of kind chan.
737//
738// Type() returns a (possibly named) *types.Chan.
739//
740// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
741// created it.
742//
743// Example printed form:
744// t0 = make chan int 0
745// t0 = make IntChan 0
746//
747type MakeChan struct {
748 register
749 Size Value // int; size of buffer; zero => synchronous.
750}
751
752// The MakeSlice instruction yields a slice of length Len backed by a
753// newly allocated array of length Cap.
754//
755// Both Len and Cap must be non-nil Values of integer type.
756//
757// (Alloc(types.Array) followed by Slice will not suffice because
758// Alloc can only create arrays of constant length.)
759//
760// Type() returns a (possibly named) *types.Slice.
761//
762// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
763// created it.
764//
765// Example printed form:
766// t1 = make []string 1:int t0
767// t1 = make StringSlice 1:int t0
768//
769type MakeSlice struct {
770 register
771 Len Value
772 Cap Value
773}
774
775// The Slice instruction yields a slice of an existing string, slice
776// or *array X between optional integer bounds Low and High.
777//
778// Dynamically, this instruction panics if X evaluates to a nil *array
779// pointer.
780//
781// Type() returns string if the type of X was string, otherwise a
782// *types.Slice with the same element type as X.
783//
784// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
785// operation, the ast.CompositeLit.Lbrace if created by a literal, or
786// NoPos if not explicit in the source (e.g. a variadic argument slice).
787//
788// Example printed form:
789// t1 = slice t0[1:]
790//
791type Slice struct {
792 register
793 X Value // slice, string, or *array
794 Low, High, Max Value // each may be nil
795}
796
797// The FieldAddr instruction yields the address of Field of *struct X.
798//
799// The field is identified by its index within the field list of the
800// struct type of X.
801//
802// Dynamically, this instruction panics if X evaluates to a nil
803// pointer.
804//
805// Type() returns a (possibly named) *types.Pointer.
806//
807// Pos() returns the position of the ast.SelectorExpr.Sel for the
808// field, if explicit in the source.
809//
810// Example printed form:
811// t1 = &t0.name [#1]
812//
813type FieldAddr struct {
814 register
815 X Value // *struct
816 Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
817}
818
819// The Field instruction yields the Field of struct X.
820//
821// The field is identified by its index within the field list of the
822// struct type of X; by using numeric indices we avoid ambiguity of
823// package-local identifiers and permit compact representations.
824//
825// Pos() returns the position of the ast.SelectorExpr.Sel for the
826// field, if explicit in the source.
827//
828// Example printed form:
829// t1 = t0.name [#1]
830//
831type Field struct {
832 register
833 X Value // struct
834 Field int // index into X.Type().(*types.Struct).Fields
835}
836
837// The IndexAddr instruction yields the address of the element at
838// index Index of collection X. Index is an integer expression.
839//
840// The elements of maps and strings are not addressable; use Lookup or
841// MapUpdate instead.
842//
843// Dynamically, this instruction panics if X evaluates to a nil *array
844// pointer.
845//
846// Type() returns a (possibly named) *types.Pointer.
847//
848// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
849// explicit in the source.
850//
851// Example printed form:
852// t2 = &t0[t1]
853//
854type IndexAddr struct {
855 register
856 X Value // slice or *array,
857 Index Value // numeric index
858}
859
860// The Index instruction yields element Index of array X.
861//
862// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
863// explicit in the source.
864//
865// Example printed form:
866// t2 = t0[t1]
867//
868type Index struct {
869 register
870 X Value // array
871 Index Value // integer index
872}
873
874// The Lookup instruction yields element Index of collection X, a map
875// or string. Index is an integer expression if X is a string or the
876// appropriate key type if X is a map.
877//
878// If CommaOk, the result is a 2-tuple of the value above and a
879// boolean indicating the result of a map membership test for the key.
880// The components of the tuple are accessed using Extract.
881//
882// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
883//
884// Example printed form:
885// t2 = t0[t1]
886// t5 = t3[t4],ok
887//
888type Lookup struct {
889 register
890 X Value // string or map
891 Index Value // numeric or key-typed index
892 CommaOk bool // return a value,ok pair
893}
894
895// SelectState is a helper for Select.
896// It represents one goal state and its corresponding communication.
897//
898type SelectState struct {
899 Dir types.ChanDir // direction of case (SendOnly or RecvOnly)
900 Chan Value // channel to use (for send or receive)
901 Send Value // value to send (for send)
902 Pos token.Pos // position of token.ARROW
903 DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
904}
905
906// The Select instruction tests whether (or blocks until) one
907// of the specified sent or received states is entered.
908//
909// Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
910// be the element type of each such state's Chan.
911// Select returns an n+2-tuple
912// (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
913// The tuple's components, described below, must be accessed via the
914// Extract instruction.
915//
916// If Blocking, select waits until exactly one state holds, i.e. a
917// channel becomes ready for the designated operation of sending or
918// receiving; select chooses one among the ready states
919// pseudorandomly, performs the send or receive operation, and sets
920// 'index' to the index of the chosen channel.
921//
922// If !Blocking, select doesn't block if no states hold; instead it
923// returns immediately with index equal to -1.
924//
925// If the chosen channel was used for a receive, the r_i component is
926// set to the received value, where i is the index of that state among
927// all n receive states; otherwise r_i has the zero value of type T_i.
928// Note that the receive index i is not the same as the state
929// index index.
930//
931// The second component of the triple, recvOk, is a boolean whose value
932// is true iff the selected operation was a receive and the receive
933// successfully yielded a value.
934//
935// Pos() returns the ast.SelectStmt.Select.
936//
937// Example printed form:
938// t3 = select nonblocking [<-t0, t1<-t2]
939// t4 = select blocking []
940//
941type Select struct {
942 register
943 States []*SelectState
944 Blocking bool
945}
946
947// The Range instruction yields an iterator over the domain and range
948// of X, which must be a string or map.
949//
950// Elements are accessed via Next.
951//
952// Type() returns an opaque and degenerate "rangeIter" type.
953//
954// Pos() returns the ast.RangeStmt.For.
955//
956// Example printed form:
957// t0 = range "hello":string
958//
959type Range struct {
960 register
961 X Value // string or map
962}
963
964// The Next instruction reads and advances the (map or string)
965// iterator Iter and returns a 3-tuple value (ok, k, v). If the
966// iterator is not exhausted, ok is true and k and v are the next
967// elements of the domain and range, respectively. Otherwise ok is
968// false and k and v are undefined.
969//
970// Components of the tuple are accessed using Extract.
971//
972// The IsString field distinguishes iterators over strings from those
973// over maps, as the Type() alone is insufficient: consider
974// map[int]rune.
975//
976// Type() returns a *types.Tuple for the triple (ok, k, v).
977// The types of k and/or v may be types.Invalid.
978//
979// Example printed form:
980// t1 = next t0
981//
982type Next struct {
983 register
984 Iter Value
985 IsString bool // true => string iterator; false => map iterator.
986}
987
988// The TypeAssert instruction tests whether interface value X has type
989// AssertedType.
990//
991// If !CommaOk, on success it returns v, the result of the conversion
992// (defined below); on failure it panics.
993//
994// If CommaOk: on success it returns a pair (v, true) where v is the
995// result of the conversion; on failure it returns (z, false) where z
996// is AssertedType's zero value. The components of the pair must be
997// accessed using the Extract instruction.
998//
999// If AssertedType is a concrete type, TypeAssert checks whether the
1000// dynamic type in interface X is equal to it, and if so, the result
1001// of the conversion is a copy of the value in the interface.
1002//
1003// If AssertedType is an interface, TypeAssert checks whether the
1004// dynamic type of the interface is assignable to it, and if so, the
1005// result of the conversion is a copy of the interface value X.
1006// If AssertedType is a superinterface of X.Type(), the operation will
1007// fail iff the operand is nil. (Contrast with ChangeInterface, which
1008// performs no nil-check.)
1009//
1010// Type() reflects the actual type of the result, possibly a
1011// 2-types.Tuple; AssertedType is the asserted type.
1012//
1013// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
1014// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
1015// instruction arose from an explicit e.(T) operation; or the
1016// ast.CaseClause.Case if the instruction arose from a case of a
1017// type-switch statement.
1018//
1019// Example printed form:
1020// t1 = typeassert t0.(int)
1021// t3 = typeassert,ok t2.(T)
1022//
1023type TypeAssert struct {
1024 register
1025 X Value
1026 AssertedType types.Type
1027 CommaOk bool
1028}
1029
1030// The Extract instruction yields component Index of Tuple.
1031//
1032// This is used to access the results of instructions with multiple
1033// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
1034// IndexExpr(Map).
1035//
1036// Example printed form:
1037// t1 = extract t0 #1
1038//
1039type Extract struct {
1040 register
1041 Tuple Value
1042 Index int
1043}
1044
1045// Instructions executed for effect. They do not yield a value. --------------------
1046
1047// The Jump instruction transfers control to the sole successor of its
1048// owning block.
1049//
1050// A Jump must be the last instruction of its containing BasicBlock.
1051//
1052// Pos() returns NoPos.
1053//
1054// Example printed form:
1055// jump done
1056//
1057type Jump struct {
1058 anInstruction
1059}
1060
1061// The If instruction transfers control to one of the two successors
1062// of its owning block, depending on the boolean Cond: the first if
1063// true, the second if false.
1064//
1065// An If instruction must be the last instruction of its containing
1066// BasicBlock.
1067//
1068// Pos() returns NoPos.
1069//
1070// Example printed form:
1071// if t0 goto done else body
1072//
1073type If struct {
1074 anInstruction
1075 Cond Value
1076}
1077
1078// The Return instruction returns values and control back to the calling
1079// function.
1080//
1081// len(Results) is always equal to the number of results in the
1082// function's signature.
1083//
1084// If len(Results) > 1, Return returns a tuple value with the specified
1085// components which the caller must access using Extract instructions.
1086//
1087// There is no instruction to return a ready-made tuple like those
1088// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
1089// a tail-call to a function with multiple result parameters.
1090//
1091// Return must be the last instruction of its containing BasicBlock.
1092// Such a block has no successors.
1093//
1094// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
1095//
1096// Example printed form:
1097// return
1098// return nil:I, 2:int
1099//
1100type Return struct {
1101 anInstruction
1102 Results []Value
1103 pos token.Pos
1104}
1105
1106// The RunDefers instruction pops and invokes the entire stack of
1107// procedure calls pushed by Defer instructions in this function.
1108//
1109// It is legal to encounter multiple 'rundefers' instructions in a
1110// single control-flow path through a function; this is useful in
1111// the combined init() function, for example.
1112//
1113// Pos() returns NoPos.
1114//
1115// Example printed form:
1116// rundefers
1117//
1118type RunDefers struct {
1119 anInstruction
1120}
1121
1122// The Panic instruction initiates a panic with value X.
1123//
1124// A Panic instruction must be the last instruction of its containing
1125// BasicBlock, which must have no successors.
1126//
1127// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
1128// they are treated as calls to a built-in function.
1129//
1130// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
1131// in the source.
1132//
1133// Example printed form:
1134// panic t0
1135//
1136type Panic struct {
1137 anInstruction
1138 X Value // an interface{}
1139 pos token.Pos
1140}
1141
1142// The Go instruction creates a new goroutine and calls the specified
1143// function within it.
1144//
1145// See CallCommon for generic function call documentation.
1146//
1147// Pos() returns the ast.GoStmt.Go.
1148//
1149// Example printed form:
1150// go println(t0, t1)
1151// go t3()
1152// go invoke t5.Println(...t6)
1153//
1154type Go struct {
1155 anInstruction
1156 Call CallCommon
1157 pos token.Pos
1158}
1159
1160// The Defer instruction pushes the specified call onto a stack of
1161// functions to be called by a RunDefers instruction or by a panic.
1162//
1163// See CallCommon for generic function call documentation.
1164//
1165// Pos() returns the ast.DeferStmt.Defer.
1166//
1167// Example printed form:
1168// defer println(t0, t1)
1169// defer t3()
1170// defer invoke t5.Println(...t6)
1171//
1172type Defer struct {
1173 anInstruction
1174 Call CallCommon
1175 pos token.Pos
1176}
1177
1178// The Send instruction sends X on channel Chan.
1179//
1180// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
1181//
1182// Example printed form:
1183// send t0 <- t1
1184//
1185type Send struct {
1186 anInstruction
1187 Chan, X Value
1188 pos token.Pos
1189}
1190
1191// The Store instruction stores Val at address Addr.
1192// Stores can be of arbitrary types.
1193//
1194// Pos() returns the position of the source-level construct most closely
1195// associated with the memory store operation.
1196// Since implicit memory stores are numerous and varied and depend upon
1197// implementation choices, the details are not specified.
1198//
1199// Example printed form:
1200// *x = y
1201//
1202type Store struct {
1203 anInstruction
1204 Addr Value
1205 Val Value
1206 pos token.Pos
1207}
1208
1209// The BlankStore instruction is emitted for assignments to the blank
1210// identifier.
1211//
1212// BlankStore is a pseudo-instruction: it has no dynamic effect.
1213//
1214// Pos() returns NoPos.
1215//
1216// Example printed form:
1217// _ = t0
1218//
1219type BlankStore struct {
1220 anInstruction
1221 Val Value
1222}
1223
1224// The MapUpdate instruction updates the association of Map[Key] to
1225// Value.
1226//
1227// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
1228// if explicit in the source.
1229//
1230// Example printed form:
1231// t0[t1] = t2
1232//
1233type MapUpdate struct {
1234 anInstruction
1235 Map Value
1236 Key Value
1237 Value Value
1238 pos token.Pos
1239}
1240
1241// A DebugRef instruction maps a source-level expression Expr to the
1242// SSA value X that represents the value (!IsAddr) or address (IsAddr)
1243// of that expression.
1244//
1245// DebugRef is a pseudo-instruction: it has no dynamic effect.
1246//
1247// Pos() returns Expr.Pos(), the start position of the source-level
1248// expression. This is not the same as the "designated" token as
1249// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
1250// position of the ("designated") Lparen token.
1251//
1252// If Expr is an *ast.Ident denoting a var or func, Object() returns
1253// the object; though this information can be obtained from the type
1254// checker, including it here greatly facilitates debugging.
1255// For non-Ident expressions, Object() returns nil.
1256//
1257// DebugRefs are generated only for functions built with debugging
1258// enabled; see Package.SetDebugMode() and the GlobalDebug builder
1259// mode flag.
1260//
1261// DebugRefs are not emitted for ast.Idents referring to constants or
1262// predeclared identifiers, since they are trivial and numerous.
1263// Nor are they emitted for ast.ParenExprs.
1264//
1265// (By representing these as instructions, rather than out-of-band,
1266// consistency is maintained during transformation passes by the
1267// ordinary SSA renaming machinery.)
1268//
1269// Example printed form:
1270// ; *ast.CallExpr @ 102:9 is t5
1271// ; var x float64 @ 109:72 is x
1272// ; address of *ast.CompositeLit @ 216:10 is t0
1273//
1274type DebugRef struct {
1275 anInstruction
1276 Expr ast.Expr // the referring expression (never *ast.ParenExpr)
1277 object types.Object // the identity of the source var/func
1278 IsAddr bool // Expr is addressable and X is the address it denotes
1279 X Value // the value or address of Expr
1280}
1281
1282// Embeddable mix-ins and helpers for common parts of other structs. -----------
1283
1284// register is a mix-in embedded by all SSA values that are also
1285// instructions, i.e. virtual registers, and provides a uniform
1286// implementation of most of the Value interface: Value.Name() is a
1287// numbered register (e.g. "t0"); the other methods are field accessors.
1288//
1289// Temporary names are automatically assigned to each register on
1290// completion of building a function in SSA form.
1291//
1292// Clients must not assume that the 'id' value (and the Name() derived
1293// from it) is unique within a function. As always in this API,
1294// semantics are determined only by identity; names exist only to
1295// facilitate debugging.
1296//
1297type register struct {
1298 anInstruction
1299 num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
1300 typ types.Type // type of virtual register
1301 pos token.Pos // position of source expression, or NoPos
1302 referrers []Instruction
1303}
1304
1305// anInstruction is a mix-in embedded by all Instructions.
1306// It provides the implementations of the Block and setBlock methods.
1307type anInstruction struct {
1308 block *BasicBlock // the basic block of this instruction
1309}
1310
1311// CallCommon is contained by Go, Defer and Call to hold the
1312// common parts of a function or method call.
1313//
1314// Each CallCommon exists in one of two modes, function call and
1315// interface method invocation, or "call" and "invoke" for short.
1316//
1317// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
1318// represents an ordinary function call of the value in Value,
1319// which may be a *Builtin, a *Function or any other value of kind
1320// 'func'.
1321//
1322// Value may be one of:
1323// (a) a *Function, indicating a statically dispatched call
1324// to a package-level function, an anonymous function, or
1325// a method of a named type.
1326// (b) a *MakeClosure, indicating an immediately applied
1327// function literal with free variables.
1328// (c) a *Builtin, indicating a statically dispatched call
1329// to a built-in function.
1330// (d) any other value, indicating a dynamically dispatched
1331// function call.
1332// StaticCallee returns the identity of the callee in cases
1333// (a) and (b), nil otherwise.
1334//
1335// Args contains the arguments to the call. If Value is a method,
1336// Args[0] contains the receiver parameter.
1337//
1338// Example printed form:
1339// t2 = println(t0, t1)
1340// go t3()
1341// defer t5(...t6)
1342//
1343// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
1344// represents a dynamically dispatched call to an interface method.
1345// In this mode, Value is the interface value and Method is the
1346// interface's abstract method. Note: an abstract method may be
1347// shared by multiple interfaces due to embedding; Value.Type()
1348// provides the specific interface used for this call.
1349//
1350// Value is implicitly supplied to the concrete method implementation
1351// as the receiver parameter; in other words, Args[0] holds not the
1352// receiver but the first true argument.
1353//
1354// Example printed form:
1355// t1 = invoke t0.String()
1356// go invoke t3.Run(t2)
1357// defer invoke t4.Handle(...t5)
1358//
1359// For all calls to variadic functions (Signature().Variadic()),
1360// the last element of Args is a slice.
1361//
1362type CallCommon struct {
1363 Value Value // receiver (invoke mode) or func value (call mode)
1364 Method *types.Func // abstract method (invoke mode)
1365 Args []Value // actual parameters (in static method call, includes receiver)
1366 pos token.Pos // position of CallExpr.Lparen, iff explicit in source
1367}
1368
1369// IsInvoke returns true if this call has "invoke" (not "call") mode.
1370func (c *CallCommon) IsInvoke() bool {
1371 return c.Method != nil
1372}
1373
1374func (c *CallCommon) Pos() token.Pos { return c.pos }
1375
1376// Signature returns the signature of the called function.
1377//
1378// For an "invoke"-mode call, the signature of the interface method is
1379// returned.
1380//
1381// In either "call" or "invoke" mode, if the callee is a method, its
1382// receiver is represented by sig.Recv, not sig.Params().At(0).
1383//
1384func (c *CallCommon) Signature() *types.Signature {
1385 if c.Method != nil {
1386 return c.Method.Type().(*types.Signature)
1387 }
1388 return c.Value.Type().Underlying().(*types.Signature)
1389}
1390
1391// StaticCallee returns the callee if this is a trivially static
1392// "call"-mode call to a function.
1393func (c *CallCommon) StaticCallee() *Function {
1394 switch fn := c.Value.(type) {
1395 case *Function:
1396 return fn
1397 case *MakeClosure:
1398 return fn.Fn.(*Function)
1399 }
1400 return nil
1401}
1402
1403// Description returns a description of the mode of this call suitable
1404// for a user interface, e.g., "static method call".
1405func (c *CallCommon) Description() string {
1406 switch fn := c.Value.(type) {
1407 case *Builtin:
1408 return "built-in function call"
1409 case *MakeClosure:
1410 return "static function closure call"
1411 case *Function:
1412 if fn.Signature.Recv() != nil {
1413 return "static method call"
1414 }
1415 return "static function call"
1416 }
1417 if c.IsInvoke() {
1418 return "dynamic method call" // ("invoke" mode)
1419 }
1420 return "dynamic function call"
1421}
1422
1423// The CallInstruction interface, implemented by *Go, *Defer and *Call,
1424// exposes the common parts of function-calling instructions,
1425// yet provides a way back to the Value defined by *Call alone.
1426//
1427type CallInstruction interface {
1428 Instruction
1429 Common() *CallCommon // returns the common parts of the call
1430 Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer)
1431}
1432
1433func (s *Call) Common() *CallCommon { return &s.Call }
1434func (s *Defer) Common() *CallCommon { return &s.Call }
1435func (s *Go) Common() *CallCommon { return &s.Call }
1436
1437func (s *Call) Value() *Call { return s }
1438func (s *Defer) Value() *Call { return nil }
1439func (s *Go) Value() *Call { return nil }
1440
1441func (v *Builtin) Type() types.Type { return v.sig }
1442func (v *Builtin) Name() string { return v.name }
1443func (*Builtin) Referrers() *[]Instruction { return nil }
1444func (v *Builtin) Pos() token.Pos { return token.NoPos }
1445func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) }
1446func (v *Builtin) Parent() *Function { return nil }
1447
1448func (v *FreeVar) Type() types.Type { return v.typ }
1449func (v *FreeVar) Name() string { return v.name }
1450func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
1451func (v *FreeVar) Pos() token.Pos { return v.pos }
1452func (v *FreeVar) Parent() *Function { return v.parent }
1453
1454func (v *Global) Type() types.Type { return v.typ }
1455func (v *Global) Name() string { return v.name }
1456func (v *Global) Parent() *Function { return nil }
1457func (v *Global) Pos() token.Pos { return v.pos }
1458func (v *Global) Referrers() *[]Instruction { return nil }
1459func (v *Global) Token() token.Token { return token.VAR }
1460func (v *Global) Object() types.Object { return v.object }
1461func (v *Global) String() string { return v.RelString(nil) }
1462func (v *Global) Package() *Package { return v.Pkg }
1463func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
1464
1465func (v *Function) Name() string { return v.name }
1466func (v *Function) Type() types.Type { return v.Signature }
1467func (v *Function) Pos() token.Pos { return v.pos }
1468func (v *Function) Token() token.Token { return token.FUNC }
1469func (v *Function) Object() types.Object { return v.object }
1470func (v *Function) String() string { return v.RelString(nil) }
1471func (v *Function) Package() *Package { return v.Pkg }
1472func (v *Function) Parent() *Function { return v.parent }
1473func (v *Function) Referrers() *[]Instruction {
1474 if v.parent != nil {
1475 return &v.referrers
1476 }
1477 return nil
1478}
1479
1480func (v *Parameter) Type() types.Type { return v.typ }
1481func (v *Parameter) Name() string { return v.name }
1482func (v *Parameter) Object() types.Object { return v.object }
1483func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
1484func (v *Parameter) Pos() token.Pos { return v.pos }
1485func (v *Parameter) Parent() *Function { return v.parent }
1486
1487func (v *Alloc) Type() types.Type { return v.typ }
1488func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
1489func (v *Alloc) Pos() token.Pos { return v.pos }
1490
1491func (v *register) Type() types.Type { return v.typ }
1492func (v *register) setType(typ types.Type) { v.typ = typ }
1493func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) }
1494func (v *register) setNum(num int) { v.num = num }
1495func (v *register) Referrers() *[]Instruction { return &v.referrers }
1496func (v *register) Pos() token.Pos { return v.pos }
1497func (v *register) setPos(pos token.Pos) { v.pos = pos }
1498
1499func (v *anInstruction) Parent() *Function { return v.block.parent }
1500func (v *anInstruction) Block() *BasicBlock { return v.block }
1501func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
1502func (v *anInstruction) Referrers() *[]Instruction { return nil }
1503
1504func (t *Type) Name() string { return t.object.Name() }
1505func (t *Type) Pos() token.Pos { return t.object.Pos() }
1506func (t *Type) Type() types.Type { return t.object.Type() }
1507func (t *Type) Token() token.Token { return token.TYPE }
1508func (t *Type) Object() types.Object { return t.object }
1509func (t *Type) String() string { return t.RelString(nil) }
1510func (t *Type) Package() *Package { return t.pkg }
1511func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
1512
1513func (c *NamedConst) Name() string { return c.object.Name() }
1514func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
1515func (c *NamedConst) String() string { return c.RelString(nil) }
1516func (c *NamedConst) Type() types.Type { return c.object.Type() }
1517func (c *NamedConst) Token() token.Token { return token.CONST }
1518func (c *NamedConst) Object() types.Object { return c.object }
1519func (c *NamedConst) Package() *Package { return c.pkg }
1520func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
1521
1522// Func returns the package-level function of the specified name,
1523// or nil if not found.
1524//
1525func (p *Package) Func(name string) (f *Function) {
1526 f, _ = p.Members[name].(*Function)
1527 return
1528}
1529
1530// Var returns the package-level variable of the specified name,
1531// or nil if not found.
1532//
1533func (p *Package) Var(name string) (g *Global) {
1534 g, _ = p.Members[name].(*Global)
1535 return
1536}
1537
1538// Const returns the package-level constant of the specified name,
1539// or nil if not found.
1540//
1541func (p *Package) Const(name string) (c *NamedConst) {
1542 c, _ = p.Members[name].(*NamedConst)
1543 return
1544}
1545
1546// Type returns the package-level type of the specified name,
1547// or nil if not found.
1548//
1549func (p *Package) Type(name string) (t *Type) {
1550 t, _ = p.Members[name].(*Type)
1551 return
1552}
1553
1554func (v *Call) Pos() token.Pos { return v.Call.pos }
1555func (s *Defer) Pos() token.Pos { return s.pos }
1556func (s *Go) Pos() token.Pos { return s.pos }
1557func (s *MapUpdate) Pos() token.Pos { return s.pos }
1558func (s *Panic) Pos() token.Pos { return s.pos }
1559func (s *Return) Pos() token.Pos { return s.pos }
1560func (s *Send) Pos() token.Pos { return s.pos }
1561func (s *Store) Pos() token.Pos { return s.pos }
1562func (s *BlankStore) Pos() token.Pos { return token.NoPos }
1563func (s *If) Pos() token.Pos { return token.NoPos }
1564func (s *Jump) Pos() token.Pos { return token.NoPos }
1565func (s *RunDefers) Pos() token.Pos { return token.NoPos }
1566func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
1567
1568// Operands.
1569
1570func (v *Alloc) Operands(rands []*Value) []*Value {
1571 return rands
1572}
1573
1574func (v *BinOp) Operands(rands []*Value) []*Value {
1575 return append(rands, &v.X, &v.Y)
1576}
1577
1578func (c *CallCommon) Operands(rands []*Value) []*Value {
1579 rands = append(rands, &c.Value)
1580 for i := range c.Args {
1581 rands = append(rands, &c.Args[i])
1582 }
1583 return rands
1584}
1585
1586func (s *Go) Operands(rands []*Value) []*Value {
1587 return s.Call.Operands(rands)
1588}
1589
1590func (s *Call) Operands(rands []*Value) []*Value {
1591 return s.Call.Operands(rands)
1592}
1593
1594func (s *Defer) Operands(rands []*Value) []*Value {
1595 return s.Call.Operands(rands)
1596}
1597
1598func (v *ChangeInterface) Operands(rands []*Value) []*Value {
1599 return append(rands, &v.X)
1600}
1601
1602func (v *ChangeType) Operands(rands []*Value) []*Value {
1603 return append(rands, &v.X)
1604}
1605
1606func (v *Convert) Operands(rands []*Value) []*Value {
1607 return append(rands, &v.X)
1608}
1609
1610func (s *DebugRef) Operands(rands []*Value) []*Value {
1611 return append(rands, &s.X)
1612}
1613
1614func (v *Extract) Operands(rands []*Value) []*Value {
1615 return append(rands, &v.Tuple)
1616}
1617
1618func (v *Field) Operands(rands []*Value) []*Value {
1619 return append(rands, &v.X)
1620}
1621
1622func (v *FieldAddr) Operands(rands []*Value) []*Value {
1623 return append(rands, &v.X)
1624}
1625
1626func (s *If) Operands(rands []*Value) []*Value {
1627 return append(rands, &s.Cond)
1628}
1629
1630func (v *Index) Operands(rands []*Value) []*Value {
1631 return append(rands, &v.X, &v.Index)
1632}
1633
1634func (v *IndexAddr) Operands(rands []*Value) []*Value {
1635 return append(rands, &v.X, &v.Index)
1636}
1637
1638func (*Jump) Operands(rands []*Value) []*Value {
1639 return rands
1640}
1641
1642func (v *Lookup) Operands(rands []*Value) []*Value {
1643 return append(rands, &v.X, &v.Index)
1644}
1645
1646func (v *MakeChan) Operands(rands []*Value) []*Value {
1647 return append(rands, &v.Size)
1648}
1649
1650func (v *MakeClosure) Operands(rands []*Value) []*Value {
1651 rands = append(rands, &v.Fn)
1652 for i := range v.Bindings {
1653 rands = append(rands, &v.Bindings[i])
1654 }
1655 return rands
1656}
1657
1658func (v *MakeInterface) Operands(rands []*Value) []*Value {
1659 return append(rands, &v.X)
1660}
1661
1662func (v *MakeMap) Operands(rands []*Value) []*Value {
1663 return append(rands, &v.Reserve)
1664}
1665
1666func (v *MakeSlice) Operands(rands []*Value) []*Value {
1667 return append(rands, &v.Len, &v.Cap)
1668}
1669
1670func (v *MapUpdate) Operands(rands []*Value) []*Value {
1671 return append(rands, &v.Map, &v.Key, &v.Value)
1672}
1673
1674func (v *Next) Operands(rands []*Value) []*Value {
1675 return append(rands, &v.Iter)
1676}
1677
1678func (s *Panic) Operands(rands []*Value) []*Value {
1679 return append(rands, &s.X)
1680}
1681
1682func (v *Sigma) Operands(rands []*Value) []*Value {
1683 return append(rands, &v.X)
1684}
1685
1686func (v *Phi) Operands(rands []*Value) []*Value {
1687 for i := range v.Edges {
1688 rands = append(rands, &v.Edges[i])
1689 }
1690 return rands
1691}
1692
1693func (v *Range) Operands(rands []*Value) []*Value {
1694 return append(rands, &v.X)
1695}
1696
1697func (s *Return) Operands(rands []*Value) []*Value {
1698 for i := range s.Results {
1699 rands = append(rands, &s.Results[i])
1700 }
1701 return rands
1702}
1703
1704func (*RunDefers) Operands(rands []*Value) []*Value {
1705 return rands
1706}
1707
1708func (v *Select) Operands(rands []*Value) []*Value {
1709 for i := range v.States {
1710 rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
1711 }
1712 return rands
1713}
1714
1715func (s *Send) Operands(rands []*Value) []*Value {
1716 return append(rands, &s.Chan, &s.X)
1717}
1718
1719func (v *Slice) Operands(rands []*Value) []*Value {
1720 return append(rands, &v.X, &v.Low, &v.High, &v.Max)
1721}
1722
1723func (s *Store) Operands(rands []*Value) []*Value {
1724 return append(rands, &s.Addr, &s.Val)
1725}
1726
1727func (s *BlankStore) Operands(rands []*Value) []*Value {
1728 return append(rands, &s.Val)
1729}
1730
1731func (v *TypeAssert) Operands(rands []*Value) []*Value {
1732 return append(rands, &v.X)
1733}
1734
1735func (v *UnOp) Operands(rands []*Value) []*Value {
1736 return append(rands, &v.X)
1737}
1738
1739// Non-Instruction Values:
1740func (v *Builtin) Operands(rands []*Value) []*Value { return rands }
1741func (v *FreeVar) Operands(rands []*Value) []*Value { return rands }
1742func (v *Const) Operands(rands []*Value) []*Value { return rands }
1743func (v *Function) Operands(rands []*Value) []*Value { return rands }
1744func (v *Global) Operands(rands []*Value) []*Value { return rands }
1745func (v *Parameter) Operands(rands []*Value) []*Value { return rands }